第一百七十八章 泰森多边形
,组成三角网。 设离散点为o。找出以o为顶点的一个三角形,设为a;取三角形a除o以外的另一顶点,设为a,则另一个顶点也可找出,即为f;则下一个三角形必然是以of为边的,即为三角形f;三角形f的另一顶点为e,则下一三角形是以oe为边的;如此重复进行,直到回到oa边。 计算出以这个离散点为定点的每个三角形的外接圆的圆心,并将其相连。 这样,组成的三角形,就称之为……泰森多边形。用公式来表示的话,就是√∑si-s^2/n,n=1,2,3,…… 举个栗子~~ 位于京都的水立方,就是根据泰森多边形的原理设计的。 而两位选手的挑战规则,具体如下。 两个球面,每个球面上面都各自分布着5000个离散点。 每个球面,都有5000个离散点,每一个离散点,都能构成一个泰森多边形,那总共就是5000个泰森多边形。 另一个球面,同样也是5000个泰森多边形。 在这总共10000个泰森多边形中,有且仅有两个泰森多边形,完全相同! 而选手需要做的,就是在最短的时间内,找出这两个完全相同的泰森多边形,并按下抢答器! 答对加一分,答错对手加一分。 总共进行三局,先得两分者获胜。 这个挑战项目,乍看起来,似乎很简单,就是我们平常玩的“找不同”的升级版,找相同嘛…… 然而,事实上,这个挑战项目,是今天华国对战岛国的五场比赛中,最难的一个挑战项目!